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Abstract. Green function theory is used to describe the radiation spectrum of non-thermal 
quantum plasmas. A general formula is derived from a statistical average of the Poynting 
vector and a formal analogy with the equilibrium results is established in the case of slowly 
varying disturbances. 

1. Introduction 

The statistical average of the Poynting vector has been widely used to calculate the 
flow of energy carried by electromagnetic fields in classical plasmas (see, e.g., Ichimaru 
et a1 [l], Fidone et af [2] among many authors). Our aim was to extend this method 
to non-equilibrium quantum plasmas, and the need for rigour led us to the choice of 
a formalism that permits us to treat the charged particles and the radiation field on 
the same footing. 

The theoretical framework adopted here is the non-equilibrium Green function 
technique, initially due to Kadanoff and Baym [3], applied to the study of the statistical 
properties of radiation in a plasma [4-61. A brief account of this theory is given in 
9 2. In 9 3 the averaged Poynting vector is expressed in terms of the real-time correlation 
functions D:Y. Then, introducing a set of local variables, we show that the radiation 
spectrum can be evaluated through the use of generalised distribution functions NLLY 
and spectral functions A,, just as in equilibrium. In § 4 the plasma is considered to 
be locally isotropic and the external disturbances to be slowly varying in time and 
space. In such a case our general result reduces to an expression where the transverse 
dielectric function of the medium appears explicitly. We conclude this work by showing 
how the radiation spectrum for a plasma in thermodynamic equilibrium can be easily 
derived from this formalism. 

2. Statistical description of radiation field 

We consider a system of charged particles interacting with the electromagnetic field. 
The statistical state of this system is described by the Hamiltonian Ho and the (equili- 
brium) density matrix po. At the time t o ,  externally controlled disturbances (e-number 
currents j y t ( t )  [7]) drive the system away from its initial equilibrium state. The full 
Hamiltonian is now 
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and the ensemble average, for any observable X ,  may be written as [3-61 

( X ( t ) )  =Tr[poX(t)l t >  to (2) 

where the Heisenberg picture operator X (  t )  is related to the interaction operator XI( t )  
through 

x( t )  = S+(t, t,)x,(t)s(t, to) (3) 

with 

T denotes the usual Wick chronological operator and A” the 4-potential operator (here 
and below greek indices take the values 0, 1 ,2 ,3  while latin ones take the values 1 ,2 ,3 ) .  

Now we can introduce the various Green functions used throughout this paper. 
The time-ordered Green function D,”(x“, x”) is defined by 

D,~(X“, x‘“) = ( i f ipo)- l (TIAi , , (xh ) A , ( X ~ ~ ) ] )  ( 5 )  

where x“ = (ct ,  x) and A,, = A, - (A,). This quantity is nothing more than a generalisa- 
tion of the propagator used in vacuum quantum electrodynamics [8]. We note a 
difference in sign between the ‘statistical’ propagator and the ‘vacuum’ one: in ( 5 )  the 
sign is chosen in order to correspond to the definition of the Green functions of other 
bosons (e.g. phonons). This propagator may also be expressed in terms of the correla- 
tion function D ~ ~ ( X ” ,  x‘”): 

(6) 

Another related quantity is the response function (i.e. the retarded propagator) 

DJX”, X’*) =o(xo-x~)D;”(x”,  x ‘” )+@(x~-x , )D~, (x” ,  XfA)  

where 0 is the Heaviside function. 

D;”(xA, x’”): 

DFv(XA, XfA) = O(xo-x;)[D;”(xA, XIA) - DZ”(X”, x’”)] (7) 
which satisfies the Dyson equation, just as in the equilibrium theory, 

D$(X”, x’”) = D Z ( x “  -XIA) 

+ dy” dy‘” D ~ ( x ”  - y”)QkU(yA ,  y ’ “ ) D ~ y ( ~ ’ “ ,  x‘“), (8) I 
The polarisation tensor OFy describes the influence of the medium on the propagation 
of electromagnetic waves, including all the effects responsible for collective modes and 
screening in the plasma. In fact, as we shall see later, this function is closely related 
to the dielectric tensor of the plasma; the rates of the processes contributing to wave 
damping (principally Laudau damping and, at high densities and temperatures, pair 
production) may thus be calculated from the imaginary part of QFY. 

Since the knowledge of 0:” and LIZy gives us rather complete statistical information 
on the fields, the Green function technique appears to be a useful basis for the study 
of radiation spectra in non-equilibrium plasmas. 

3. The Poynting vector and radiation spectrum 

The symmetrised Poynting vector is given by 
S ( X “ ) = ( ( 1 / 2 p o ) [ E ( X A ) A ~ ( X A ) - B ( X h ) A E ( X A ) ] .  ( 9 )  
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In terms of the electromagnetic field tensor F p y  = d,A, - d,A,, equation (9) becomes 

S’(xA ) = ( c/2pO)[ Fo, (xA)FP’(xA)  + F‘*(xA)F,,(xA)]. 

(s*’(xA)) = ( c/2p0)( go, (XA)+“XA ) + i.’, (xA ) $,,(XA )) 

(10) 

Instead of E and B, we now use the fluctuating quantities k = E - ( E )  and = B - ( B ) .  
The statistical average of the flow of energy carried by these fields may thus be written 

(11) 
A 1 1 

where F,,, = d,A, - d,A,. Hence 

(s*l(xA))= (c/2p0) limb (~,~~~[d,(~~)A~(x~~)+A~(x~~)A,(x~)l 
x - x  

- d,d‘,[A,( xA)Ar(x tA ) + Ai(XfA )AO(XA )] 

+ d,drp [ A, ( xA,A’(xfA) + At(xjA)Ap (x”] 
- A, (XA)A@ (XtA) + A, (xfA)A, (x”]). 

The limit must be taken after the derivatives have been calculated. 

<s*’(x^)) = (ihc/2) lim (d,a’2[~<p(xA, x”) + D:P(X~, x’”)] 

In terms of the correlation functions D:y(xA, x“), we thus obtain 

A h  x - x  

- a,a’”[ D<I(xA, X f A )  + D:‘(xA, x‘A)] + d,d’”[ DZ’(XA, Xlh) + D Z ’ ( X A ,  X lA ) ]  

-dod’2[D;@(xA, X I A ) +  DZ,(X*, x’”]). (13) 
In order to write this equation in a local form (see, for example, the clear and recent 
review by Henneberger er a1 [9]) we use a new set of coordinates (r’, R A )  with 
rA = xA -x tA and R A  = (xA +xfA)/2.  Then, the correlation functions D:Y(rA, R A )  are 
expressed in terms of their Fourier transforms (with respect to the difference variable 
r A )  according to 

D=”(rA, R A )  = ( 2 ~ ) - ~  dkA cD:,(kA, R A )  exp(-ikArA) (14a) 

k A  =(w/c,  h - ’ p ) .  (146) 

I 
cDzv(kA, R A )  = 

The range of values allowed for k,, is thus ]-a; +CO[.  Nevertheless, the frequency is 
customarily considered as a positive quantity, so, in order to deal with only positive 
k,, we employ the real quantity iD:JkA, R A )  to restate (14a) as 

drA DzY(rA,  R A )  exp(ikArA) I 
iDzu(rA, R’)=[2/(27~)~] Re dkA icD=,(kA, R A )  exp(-ikArA) (14c) 

where (except with specific indication) the range of integration over dk, has to be 
understood henceforth as [O; +CO[. 

I 
Performing these changes in (13) we find 

(s*‘(xA))= [hc* / (2?~)~ ]  Re dkA i{k,k’[Dz’(kA, x^)+D;’(k”, x’)] 

+ k,k’[D,>’(k”, x A ) +  D;’(kA,  x”)]+k2[D,”(kA, x A ) +  D;’ (k* ,  x’)] 
I 

- k,k’ [  D;’( k A ,  XA ) + D;’( k A ,  x”]}. (15)  
The local coordinates allow us to introduce two useful (real) functions: the spectral 
function A,,”(kh, R A )  and the generalised ‘distribution function’ N p v ( k A ,  R A )  [4-61. 
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Let us recall first some elements of the equilibrium theory. In an equilibrium 
isotropic system, the Green functions depend on the difference variables only (i.e. 
D;9,(xA, x ’ ~ )  = Dpu( r ” )  and satisfy the famous Kubo-Martin-Schwinger boundary 
condition. In Fourier space, we thus have 

~ = , ( k ”  = exp(phcko)Dz,(kA /3 = l /kBT (16) 

and the spectral function ALqv(k“) is defined by 

Ay,(  k ” )  = i[ Dz,( k A )  - Dz,(kA )]. (17)  

A spectral representation of DFv( k A  ) is then possible (the so-called Lehmann-Kallen 
spectral representation) through the Fourier transform of the equilibrium version of (7). 

Using 
+m 

dro@(ro) exp(ikoro) = i / (ko+iv)  7+0+ (18) I_, 

= ( 2 ~ ) - ’  PV 1 dkbAiqu(kb, ki)/(ko-kb)-iALqv(k”)/2.  

we obtain the spectral representation 

D; , (kA)  = ( 2 ~ ) - ’  
+m 

dkb Aiqv(kb, ki) / (k , -kb+i7)  le 
cm 

(19) 
-m 

PV denotes the principal value of the integral. Let us recall that ALqv is the quantity 
which connects the imaginary-time propagator, computable from the standard perturba- 
tion expansion, to the physical (retarded) one [3,4,  101. Thus, from (19) 

ALqu(kA) = -2 Im D;, (k*) .  

D;,W = + ~ p u ( k , ) l A : q p ( ~ “ )  (21a) 

(20) 

We easily verify that the boundary condition on D p v ( k “ )  can be restated as 

D ( k” 1 = -i NFU ( ko) A :q ( k” 1 (21 b )  

where we write for the generalised (equilibrium) distribution function 

Npu (ko)  = gpuNeq(  ko). 

Neq(ko)  = [exp(phcko) - I ] - ’  

(22a) 

Ncq(k0)  is the Bose-Einstein distribution 

(22b) 

and the metric is g, = -g, = -g2* = -g33 = 1. 

we can define, in a similar manner, a spectral function A c , ( k A ,  R A ) :  
In the non-equilibrium case, the correlation functions no longer satisfy (16) but 

A p v ( k A ,  R A )  =i[D;,(k”, R ” ) - D z u ( k A ,  R“)]. (23) 

Just as in equilibrium, the local form of (7) leads straightforwardly to a spectral 
representation analogous to (19). Hence 

(24) A p v ( k ” ,  R A )  = -2 Im D:,(k”, R A ) .  
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Taking (23) into account we now introduce the so-called generalised distribution 
function, N,,(kA,  R A ) ,  by writing the non-equilibrium counterpart of (21) as (see [ 6 ,  p 
401)t 

Dzu(kA,  R A )  = -i[g,, +N,,(kA, RA)lAa,(kA, R A )  

Dz , (kA,  R A )  = -iN,,(kA, RA)A”,(kA, R A ) .  

( 2 5 0 )  

(256) 

Obviously, N,,(k”, R A )  is now an unknown quantity. 
Taking the sum of (25a) and (25b) we obtain 

i[Dz,(kA, R A ) + D z , ( k A ,  RA)]=[g,, +2N,a(kA, RA)]Aap(kA, R A )  (26) 

and the averaged Poynting vector becomes 

( 8 ’ ( ~ ~ ) ) = [ h ~ ~ / ( 2 ~ ) ~ ]  dkA[k’AwJ(kA, xA)-k’A’”(kA, xA) ]  

(27) 

1 
{ k][gop +2No,( kA, X A  )I - ko[gJ+ + 2 4 p ( k A ,  )I)* 

We now look for the frequency spectrum of the electromagnetic power carried to the 
point x’, striking an infinitesimal area dZ (with a unit normal n )  into a solid angle 
dfl  in the direction of k. 

Writing (f$(xA)) n as ( g l ( x A ) ) n ’  and expanding dkA as 1: dk, J dR JY dk k2 we 
obtain 

dP(xA)/dko dR d Z = [ h ~ ~ / ( 2 T ) ~ ]  dkk2[kiAw’(kA, xA)-k’AP’ ( k ” ,  xA 11 

x { kj [ go, + 2 No+ ( k ”3 x A ) 3 - ko[ gj, + 2 4 ,  ( k ”9 xA ) I1 n ’* (28) 

Equation (28) is our main result; it describes, in a fully general manner, the radiation 
spectrum of non-equilibrium plasmas. 

4. Slowly varying disturbances 

In this section we consider the externally driven sources to be slowly varying in time 
and space [3-61, i.e. all the quantities introduced in the previous sections are slowly 
varying functions of R A  on a microscopic scale determined by the range in rA (which 
depends explicitly on the physical problem studied). As noted in [ 5 ]  one should not 
confuse this approximation with the hydrodynamic local equilibrium limit, which 
requires a still lower variation. 

In our case, a gradient expansion applied to the local form of (8) yields 

DF,(kA, R A )  = D s ( k A ) + D z ( k A ) Q i m ( k A ,  R A ) D 2 , ( k A ,  R A ) .  (29) 

Henceforth, using ordinary 3~ notation (i, j ,  k = x, y ,  z )  the assumption of a locally 
isotropic medium leads to [ 6 )  

Q:(kA, R A )  = ( 8 , J - k , k J / k 2 ) Q ? ( k A ,  R A ) + ( k , k J / k 2 ) Q F ( k A ,  R A )  (30a) 

QPo(kA, R A ) =  Qt8(kA, RA)=(kok/k2)Q:o(kA, R A )  (30b) 

QF(kA, R A ) ) =  - ( k o / k ) ’ Q $ ( k A ,  R A )  ( 3 0 ~ )  

t The tensorial feature of the Green functions does not appear in their equation (5 .3)  because the authors 
used a complete set of real eigenvectors to diagonalise them. 
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where Q;(k“ ,  R A )  and Q:(k” ,  R A )  are the transverse and longitudinal projections of 

All the equations written in this section are gauge invariant. A particular gauge is 
established by calculating D E (  k ” )  in that gauge. In the Coulomb gauge we have the 
well known results 

QW, R A  1. 

D:,”(kA) = l / [k2+i  s g n ( k o ) ~ ]  D:R(k”)=DYt(k”)=O ( 3 1 0 )  

D;R(kA) = -1/[k2 - ( k , + i ~ ) ~ ]  D Y ( k ” )  = DOp(k”)(S, -k,k, /kZ).  ( 3 1 b )  

If we substitute these propagators into (29 )  we obtain 

D,Ro(k”, R”)=DD,,R(k“)/[l -DO,,R(k”)Q,R,(k”, RA)]  ( 3 2 a )  

DoR,(k”, R A )  = D:(k”, R A )  = o  ( 3 2 b )  

D:( k“,  R A )  = D:R( k A ) / [  1 - D y (  k ” ) Q $ (  k” ,  R A ) ]  (32c )  

D:(k”,  R “ ) = D ; ( k ” ,  R ” ) ( S , - k , k , / k ’ ) .  ( 3 2 4  

& T , L ( k ” ,  R ” ) = ~ + Q , R , L ( ~ ” ,  ~ “ ) / k Z o  (33 )  

Introducing the transverse and longitudinal dielectric functions 

equations ( 3 2 a )  and (32c )  become 

Dto(kh, R A )  = l /k2eL(kA,  R A )  

D,R(k”, R A ) =  l / [k i~T(k” ,  R“) -k2]  

which are similar to the equilibrium ones [lo]. In this simplified case ( 2 5 a )  and ( 2 5 b )  
take the form (see [ 5 ,  pp 552,5701) 

Do>o(kA, R A ) =  -i[l+N,(k”, RA)]AOO(k”, R A )  

D:o(kA, R A )  = -i Noo(kA, R”)Aoo(kA, R A )  

D;( k“,  R A  ) = -i[ 1 + NT( k“,  R”)]AT( k”,  R A  ) 

D;(k“,  R ” ) = - i  NT(k”,  RA)AT(kA, R A ) .  

( 3 5 a )  

(35b)  

(35c )  

( 3 5 d )  

No, and NT represent, respectively, the plasmon and transverse photon generalised 
distribution functions. 

We now turn back to (28 )  and limit ourselves to the radiation perpendicular to the 
area dZ. We easily find that it reduces to 

dP(x“)/dkodO d Z =  (hc2ko/87r4) dkk3[ l+2N#,  xA)]AT(k”, x”) .  (36 )  jo= 
To express this power in terms of the transverse dielectric function we see that (24 )  
and (34b)  give 

(37 )   AT(^", x ” ) = ( l / k 0 ) ’ [ 2  Im E T ( k “ ,  XA)/lE~(k”,XA)-y2I2)] 

with y 2  = ( k /  ko)’. 
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Finally 

dP(x*)/dk, dR dX = ( fic2/47r4kO) dk k3[ 1 + ~ N T (  k*, x h  )] 

(38) 
lo= 

X[Im ET(k*, X*)/l&T(k*, XA))-y212]. 

This expression, valid in the case of local isotropy with slowly varying external currents, 
exhibits a strong analogy with the equilibrium formula [ 13. 

5. Conclusions 

Equations (28) and (38) are the central results of this paper; both of them formally 
describe the radiation spectrum for non-equilibrium plasma-radiation systems, but 
their domains of application are quite different. 

The first one is a general formula where no assumption of any kind has been made. 
The presence of tensorial functions such as N P y  and A P u  accounts for the coupling 
between the transverse and longitudinal fields, which cannot be neglected in the case 
of a medium subject to a uniform magnetic field or strong density gradients (e.g. 
astrophysical plasmas or plasma-beam systems). The non-equilibrium state of the 
charged particles are implicitly contained in the spectral function through the polarisa- 
tion operator. 

On the other hand, (38) describes less extreme situations, where the non-equilibrium 
inhomogeneities in time and space are slowly varying on a microscopic scale. In a 
locally isotropic medium, this permits an explicit appearance of the properties of the 
plasma (through the transverse dielectric function) and leads to a formal analogy with 
the equilibrium spectrum. 

The method exposed in this paper is general (the Green function technique covers 
the entire region of density and temperature) and may thus be applied in a wide range 
of plasmas. Of course, it is particularly appropriate for systems where quantum effects 
are dominating. It is clear that a quantum treatment is necessary to describe rigorously 
a relativistic plasma; the most evident reason is that for high velocities the distance 
of closest approach for collisions of two particles becomes smaller than the de Broglie 
wavelength (the short-ranged collisions must thus be treated quantum mechanically 
to avoid the divergences for large k ) .  Consequently, this work may form a valid basis 
for the study of radiation in astrophysical plasmas. 

In a non-relativistic plasma, when the density becomes sufficiently high, a quasicon- 
tinual overlap of wavefunctions may occur (i.e. the particles are ‘always’ colliding). 
In such a medium, (28) or (38) provides an accurate description of the radiation since, 
in addition to their quantum feature, all the collective and screening effects are 
automatically taken into account in the expansion of QpY.  

As previously noted, all the functions introduced in this work can be evaluated 
from the quantum kinetic theory of plasmas and radiation related in detail in [5,6] 
which include graphical Feynman expansions for QPy and Boltzmann-like equations 
for NPY. 

The Green function technique is undoubtedly an accurate method for describing 
plasma-radiation interaction, but the price to pay for rigour is that it involves rather 
formidable computational calculations when one exceeds the first-order (collisional) 
solution of the Dyson equations. In this paper (see the appendix), we limit ourselves 
to show the consistency of our results with the equilibrium ones. 
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Appendix 

To describe the radiation spectrum of field fluctuations in an equilibrium system, we 
simply have to replace the non-equilibrium Green functions by their equilibrium 
counterparts. This can be achieved through the following changes: 

In the case of an isotropic plasma in thermodynamic equilibrium the above changes 
become 

~ ~ ( k ’ ,  R A ) ,  cT(kA, R A ) +  &tq(kA) ,  ~ % ~ ( k ’ )  

N,(k”, R A ) ,  NT(kA, R A ) +  Neq(ko).  

We thus obtain, with the aid of (38), 

dP/dko dS1 dZ = (hc2/4r4ko) coth(phck0/2) J dk k3[Im ~ ; ~ ( k ~ ) / l ~ ; ~ ; g ( k ~ )  - y2I2] 
0 

(A31 

which is exactly the quantum analogue of the equilibrium formula derived, for example, 
in [l]. 

As previously noted, the convergence (for large k) of this integral remains subject 
to a careful quantum mechanical treatment of close collisions [ l l ,  121. Of course, in 
the case of weak damping, the above problem disappears and the integral in (A3) is 
always convergent. 
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